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ABSTRACT
The Event-based Aspect-Oriented Programming model
(EAOP) makes it possible to define pointcuts in terms of
sequences of events emitted by the base program. The cur-
rent formalization of the model relies on a monolithic entity,
the monitor, which observes the execution of the base pro-
gram and executes the actions associated to the matching
pointcut. This model is not intrinsically sequential but its
current formalization favors a sequential point of view. In
this paper, we present a new formalization of EAOP as fi-
nite state processes. This new formalization paves the way
to reasoning about aspects in a concurrent setting and to
the definition and implementation of concurrent EAOP lan-
guages.

1. INTRODUCTION
The Event-based Aspect-Oriented Programming (EAOP)
model was initially presented in [7] and further refined in [4,
5]. In this model, independent from any specific program-
ming language, the points of interest of a (base) program
execution (or join points in “standard” AOP terminology)
are abstracted as events emitted during program execution.
The key feature of the model is that an aspect can asso-
ciate an action (actually a series of actions) to a sequence
of events, rather than to an individual event. This makes it
possible to build very expressive aspect languages that can
talk about the history of the base program execution beyond
the ad hoc cflow pointcut descriptors of AspectJ.

Although the use of the term “event” may lead to the thought
that the model is well-adapted to the concurrent and dis-
tributed world, this is not quite the case. Indeed, the match-
ing of event patterns is described in terms of a monolithic
monitor, which has a global view of the program execution
(in [7], EAOP is referred to as Monitor-based AOP). The
monitor receives the events emitted by the base program
and executes the aspects. This includes matching but also
executing the associated actions. Here, concurrency is ex-

plicitly restricted: the base program cannot proceed when
the monitor is active, although they are cases where this
restriction is clearly not necessary (let us consider a simple
aspect tracing the events of the base program).

On the one hand, all this makes it difficult to combine EAOP
and concurrency, at the model level, and a fortiori at the
implementation level. As a result, all the EAOP implemen-
tations [8, 6] so far have been sequential. This is unfortu-
nate as many interesting applications of AOP are concur-
rent. Actually they are even distributed, e.g., distributed
components and web services. In this context, it is interest-
ing to be able to consider the base program as a collection of
concurrent components, where each component is described
by its static and dynamic interfaces, i.e., the signatures of
its required and provided services, together with a protocol
describing, in terms of service requests and replies, the in-
teraction of the component with its environment (see, for
instance, [13, 9, 12]).

On the other hand, there are many similarities between the
EAOP model and an asynchronous concurrency model. Ba-
sically, there are both interested in execution traces. Actu-
ally the modeling of the execution of the base program as a
sequence of events directly leads to the representation of this
program as a transition system. Also, aspect composition
and pattern composition are expressed using operators (se-
quence, choice, parallel composition) which look very much
like concurrency operators.

This strongly suggests to consider recasting the EAOP model
in terms of an asynchronous concurrency model. This would
have a number of benefits:

• Such a model, defined using a well-known formalism,
would be easier to grasp and extend, for instance, re-
laxing some of the synchronization constraints between
the base program and the aspects could be considered.

• It would be possible to apply a variety of standard
tools and techniques (animation, model-checking. . . )
to EAOP models.

• The model would give guidelines for building concur-
rent (and distributed) implementations of the model.

This paper describes our first attempt to do so. It consid-
ers the basic EAOP model as described in [4] and shows



how the base programs, the aspects, and the monitor can
be encoded in a simple process calculus. This process cal-
culus is a subset of FSP (Finite State Processes) [10], which
means that the associated tool, LTSA (Labeled Transition
System Analyzer) can directly be used to animate the mod-
els, model-check them, and compute the corresponding la-
beled transition systems.

The paper is structured as follows. Section 2 describes our
starting point, a basic “sequential” EAOP model. Section 3
shows how (base) programs and aspects expressed using this
model can be encoded into finite state processes. Section 4
weakens the synchronization imposed by the previous en-
coding in order to get a fully concurrent version of EAOP.
Section 5 discusses related work and section 6 concludes.

2. SEQUENTIAL EAOP
The original version of EAOP considers sequential programs
only. A sequential program can be modeled by its set of
traces in the following syntax:

S ::= µs.(e1 → S1| . . . |en → Sn)
| s
| Stop

A sequential program is composed of sequences of execution
events e → S, branches e1 → S1|e2 → S2, and loops µs.(e →
S)1. A sequence definition ends by jumping to the beginning
of a loop (i.e., a label s of the recursion operator µ) or by
halting (i.e., Stop).

For instance, let us consider a sequential program that mod-
ifies files (as specified by the execution event write), either
within or outside of work sessions (delimited by login and
logout). Such a program can be modeled as:

µs1. (login → µs2.(write → s2|logout → s1)
|write → s1)

Either there is a session that contains file modifications (first
line), or there are file modifications outside of a session.
These two patterns can be repeated and alternated an arbi-
trary number of times.

EAOP is a sequential model for aspect-oriented program-
ming based on execution events. The base program execu-
tion emits events. Aspects monitor the base program exe-
cution and trigger advice execution when a given sequence
of events is detected. EAOP provides a specialized language
A to define aspects:

A ::= µa.(e1 . S1; A12 . . . 2en . Sn; An)
| a
| Stop

The structure of an aspect in A defines sequences of execu-
tion events to be matched, hence closely follows the structure
1In the following, for the sake of readability, we simplify
µs.S to S when s does not occur free in S.

of a sequential program in S, with recursion, sequences (op-
erator ;), choices (operator 2), and halting (operator Stop).
A new feature is that an advice Si, which is an arbitrarily
complex sequential program, is associated to each event ei,
using the operator .. The intuitive meaning of ei .Si is that
if ei matches, then the advice Si should be performed.

Advices Si are arbitrarily complex sequential programs that
can occur at every step of the sequences. For instance, let us
consider a backup aspect that commit file modifications in
a versioning system but only within a session. This aspect
can be defined as follows:

µa1. (login . Stop; µa2. (write . cvs ci → Stop; a2

2logout . Stop; a1))

First, the aspect waits for the beginning of a session (i.e., an
event login). When this happens, the corresponding empty
advice Stop is executed and the aspect now waits for either
a file modification (i.e., an event write) or the end of the
session (i.e., an event logout). When a file is modified, the
corresponding advice, cvs ci → Stop, versions the file, then
the aspect waits for the next modification or the end of the
session. When the session ends, the aspect waits for the
next one.

This aspect versions modifications that only occur during a
session. For instance, let us consider the following execution
trace of a base program:

login → write → write → logout → write → Stop

The third modification (i.e., write event) does not occur
between a login and a logout, so it will not be registered
in the versioning system. When this third modification hap-
pens, the aspect is waiting for the beginning of a new session
(i.e., login).

Basically, EAOP is sequential. It provides a coroutining
mechanism between the execution of the base program and
the execution of the aspects. Its semantics has been defined
in [4] based on a small step operational semantics of the base
program and a sequent system in order to let the monitor
interleave advice execution when a sequence of small steps is
matched. This previous work focuses on aspects interaction
detection and resolution: when two aspects match the same
sequence, two advices must be interleaved with the base
program at the very same execution point. In this case, the
sequential composition of the advices is non-deterministic,
which requires support for explicit composition beyond or-
dering. We now focus on concurrency and show how se-
quential EAOP can be encoded in a concurrent world. This
paves the way to studying concurrent versions of EAOP by
releasing some synchronization.

3. SEQUENTIAL EAOP IN A CONCURRENT
FRAMEWORK

We now encode sequential EAOP in a simple process calcu-
lus: FSP (Finite State Process) [10]. A key feature of FSP
is that FSP specifications generate finite Labeled Transi-
tion Systems (LTS). First we model the base program. A



Figure 1: LTS for the Base Program T1

base program specification in S, as defined in the previous
section, can be directly translated into an FSP primitive
process, using the sequence -> and choice | operators. Each
event corresponds then to an FSP (atomic) action (and to
a label of the corresponding LTS).

For instance, for

µs1. (login → µs2.(write → s2|logout → s1)
|write → s1)

we get:

T1 = (login -> T2 | write -> T1),

T2 = (write -> T2 | logout -> T1).

The corresponding LTS, generated using LTSA, is given
in Figure 1. It makes clear that a file modification can hap-
pen outside of a session (write in state 0) or within a session
(write in state 1). However this simple translation is not
enough in order to model sequential EAOP (i.e., coroutining
between base and aspects). Indeed, each time an execution
event ei is generated, the base program must suspend its
execution until advices have been executed (i.e., until they
generate an execution event retei for “return from ei”). This
simple instrumentation can be defined as the following pro-
gram transformation:

T1 :: S → S
T1[[µs.(e1 → S1| . . . |en → Sn)]] =

µs.(e1 → rete1 → T1[[S1]]| . . . |en → reten → T1[[Sn]])
T1[[s]] = s
T1[[Stop]] = Stop

For the previous base program example we get:

µs1.(login → retlogin →
µs2.(write → retwrite → s2

|logout → retlogout → s1)
|write → retwrite → s1)

The corresponding LTS is:

B1 = (login -> retlogin -> B2

| write -> retwrite -> B1),

B2 = (write -> retwrite -> B2

| logout -> retlogout -> B1).

Each transition of T has been decomposed into a sequence
of two transitions (see also Figure 2). Extra intermediate
states are 1, 2, 4 and 5. The two other states 0 and 3
correspond to the states 0 and 1 in the original LTS.

Let us consider a base program S and its aspects A1,. . . ,
An. The semantics of the complete system is defined as
the parallel composition of a process representing the base
program and the processes corresponding to aspects:

T1[[S]]||(T2[[A1]] α(a1))|| . . . ||(T2[[An]] α(an))

By definition of the parallel composition operator ||, these
processes synchronize together by rendez-vous on shared
events. Here, T2 is a program transformation that gener-
ates a process definition in S for each aspect in A and α
computes the alphabet (i.e., relevant events) for an aspect
as follows:

α :: A → 2Evt

α(µa.(e1 . S1; A12 . . . 2en . Sn; An))
=

Sn
i=1{ei} ∪ α(Ai)

α(a) = ∅
α(Stop) = ∅

and

T2 :: A → 2α → S
T2[[µa.(e1 . S1; A12 . . . 2en . Sn; An)]] αA

= µa. (e1 → S1[rete1 → T2[[A1]] αA/Stop]
| . . .
|en → Sn[reten → T2[[An]] αA/Stop]
|e → rete → a)
∀e in αA − {e1, . . . , en}

T2[[a]] αA = a
T2[[Stop]] αA = Stop

The role of the transformation T2 is twofold:

• First, it introduces the synchronization necessary to
implement the coroutining between the base program
and the aspects. The end Stop of each advice (defined
in S) is replaced by the event retei that resumes the
base program execution, followed by the rest of the
transformed definition. This is denoted by the substi-
tution E[e/c], which corresponds to the substitution
of e for c (here Stop) in the expression E.

• Second, each choice point is completed with empty
branches for all events that the aspect is not currently
expecting. This can be seen as an active waiting loop.
It is required so that the aspect translated as a pro-
cess does not introduce a deadlock. Either the aspect
is interested in the current base program event, or it
is not and waits for the next event.



Figure 2: LTS for the Instrumented Base Program B1

The result of the transformation on our backup aspect is the
following:

µa1. (login → retlogin →
µa2. (write → cvs ci → retwrite → a2

|logout → retlogout → a1

|login → retlogin → a2)
|write → retwrite → a1

|logout → retlogout → a1)

That is, in concrete FSP syntax:

A1 = (login -> retlogin -> A2

| write -> retwrite -> A1

| logout -> retlogout -> A1),

A2 = (write -> cvsci -> retwrite -> A2

| logout -> retlogout -> A1

| login -> retlogin -> A2).

The corresponding LTS is given in Figure 3. Waiting loops
appear naturally as state transitions 0-1-0, 0-2-0, and 4-8-4.

The FSP of the base program B1 and the FSP of the aspect
A1 share all the actions (e.g. login, write, . . . ) but cvs ci.
They synchronize by rendez-vous on these shared actions.
So the complete woven program is defined as:

||P1 = (B1||A1).

The corresponding LTS in Figure 4 shows how file versioning
cvs ci has been woven inside sessions.

This semantics makes it easy to formally prove properties.
For instance, we can specify in FSP the safety property that
“during sessions file modifications are versioned” as:

property

E1 = (login -> E2 | write -> E1),

E2 = (write -> cvsci -> E2 | logout -> E1).

The LST of this property, given in Figure 5, introduces an
error state −1 that must never be reached. The property can
be checked by composing it with the woven program ||P2 =

(P1||E1). This composition returns exactly the LTS of the
woven program (Figure 4) where the error state does not
occur: the property is satisfied by the woven program.

Note that this translation in FSP provides a slightly less se-
quential semantics than the one introduced in [4]. Indeed, in
this previous work, when several advices are to be executed
at the same execution point, they are executed one after the
other in a non-deterministic order. Our translation ensures
that all advices begin with e and finish with rete but allows
them to be interleaved (or executed in parallel). In the next
section we show how to take advantage of the concurrent
framework.

4. TOWARDS CONCURRENT EAOP
Modifying the previous transformation in order to provide
a fully concurrent version of EAOP is quite simple. First,
we consider concurrent base programs in B:

B ::= S1|| . . . ||Sn

A base program definition in B is a parallel composition
of sequential programs Si. In fact, B is a superset of S.
The transformation T1 is straightforwardly extended to B
as follows:

T1 :: B → B
T1[[S1|| . . . ||Sn]] = T1[[S1]]|| . . . ||T1[[Sn]]

Second, in T1 and T2, the events rete ensure that the base
program is paused and waits for the end of advice execution
before resuming. When these events are suppressed from
the translation schemes, the base program and the advices
can be executed in parallel.

For instance, let us consider the base program without the
synchronization events rete:

T1 = (login -> T2 | write -> T1),

T2 = (write -> T2 | logout -> T1).



Figure 3: LST for the Instrumented Aspect A1

Figure 4: LTS for the Woven Program P1

Figure 5: LTS for the Safety Property E1



and the concurrent aspect definition without the synchro-
nization events, but still with ”waiting loops” for logout

and write in state 0 and login in state 1:

CA1 = (login -> CA2

| write -> CA1

| logout -> CA1),

CA2 = (write -> cvsci -> CA2

| logout -> CA1

| login -> CA2).

The corresponding LTS is given in Figure 6. The woven pro-
gram is modeled by the parallel composition ||CP1 = (T1

|| CA1). The resulting LTS in Figure 7 performs cvs ci

after each file modification within a session. Note that this
simple example does not display much parallelism opportu-
nity. The reason is that the aspect is interested in all the
events produced by the base program and moreover matches
very closely its behaviour.

Let us consider a slightly different aspect, which commits
each write modification independently from its occurrence
within a session:

µa.(write . cvs ci; a)

The alphabet of this aspect, {write}, is a strict subset of the
set of events, {login, write, logout}, emitted by the base
program. The aspect can straightforwardly be translated
into the following process:

CA3 = (write -> cvsci -> CA3).

The LTS resulting of the weaving ||CP3 = (T1 || CA3) is
given in Figure 8. One can see that, here, the last write of a
session can be committed either before or after logout, i.e.,
this last write and logout can take place in parallel. Also,
the last write between two sessions can be committed either
before or after login.

Such a loose synchronization is not always what is required.
For instance, our backup aspect that commits the current
version of a file requires that the base program does not
modify the file before the current modification has been
committed. When the base program performs the sequence
write → compress rather than just write, the base func-
tion compress and the advice cvs ci both modify the file
and should not be executed in parallel. In general, when
the advice accesses or modifies the base program state, this
state should be locked. This synchronization can be directly
expressed in the concurrent framework with extra shared
events. For instance, we can introduce a lock event in the
base program write → lock → compress and in the aspect
advice write . cvs ci → lock → Stop in order to synchro-
nize the two functions. This event is similar to our rete
events in the previous section.

5. RELATED WORK

There are now numerous proposals for AOP, but there is
little work devoted to concurrent AOP.

In AspectJ, the base program is paused when an advice is
executed. Moreover, AspectJ does not provide explicit sup-
port for concurrent programs. So, the advices must explic-
itly create threads and the programmer must manually deal
with synchronization.

The pointcut model of AspectJ can be extended with trace
matching in order to define sequences of joinpoints (i.e., ex-
ecution events) [1]. Joinpoints in a sequence definition can
share variables (i.e., object references). This allows match-
ing several sequences at the same time in a sequential Java
program. Trace matching also provides support for concur-
rent base programs. An aspect can match the trace of a sin-
gle thread (as specified by the perthread keyword), or the
complete trace (i.e., the interleaved traces of all threads).
An advice is executed in the thread corresponding to the
last event of a sequence (i.e., the base program is paused).
However, trace matching does not provide explicit support
for concurrent aspects (advices must create threads explic-
itly). Advices are also simpler than in our model: there is
a single advice per aspect, at the end of the corresponding
sequence.

Process algebras have already been used to model AOP [2].
However, this related work does not consider concurrent
AOP but shows how to encode sequential AOP in a process
calculus. It focuses on correctness of aspect-weaving algo-
rithms and discusses different notions of equivalence. The
(non)-termination of the weaving algorithm is discussed.

Concurrency has also been considered in a domain close to
AOP: reflection. The authors of [11] criticize the standard
approach of procedural reflection, whereby the base level
is blocked when the metalevel is active and suggest that
both levels should communicate via asynchronous events.
The paper sketches a framework implementing this idea to-
gether with its implementation in Java, using J2EE and
JMS. There is no support (language or model) to reason
about synchronization and composition issues.

6. CONCLUSION
Building on previous EAOP work, we have presented a sim-
ple model of concurrent aspects built on top of a process
calculus. Although the model is an extension of the initial
EAOP model, it is a simplification of it. Important features
such as visible aspects (a.k.a. aspects of aspects) and as-
pect composition require further investigations. The issue
here is to provide the user with the right level of abstraction,
which does not seem to be at the level of the process calcu-
lus. For instance, composing our backup aspect with a disk
optimization aspect, which zips files once they have been
written, is not a simple parallel composition. Indeed, com-
mit should occur before the file is zipped. Such a constraint
cannot be expressed in a simple compositional manner (i.e.,
without rewriting the process versions of the backup and zip
aspects) using FSP.

In spite (and because) of its simplicity, we find that this
model provides an interesting basis for better understand-
ing the relationship between processes, components, and as-



Figure 6: LTS for the Concurrent Aspect CA1

Figure 7: LTS for the Concurrent Woven Program CP1

Figure 8: LTS for the Concurrent Woven Program CP3



pects, for reasoning about concurrent aspects, and for de-
signing and implementing concurrent aspect languages.
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2003. Hermès. RSTI série L’objet, 9(1-2).

[4] R. Douence, P. Fradet, and M. Südholt. A framework
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